skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Borsuk, Aleca M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Many plant leaves have two layers of photosynthetic tissue: the palisade and spongy mesophyll. Whereas palisade mesophyll consists of tightly packed columnar cells, the structure of spongy mesophyll is not well characterized and often treated as a random assemblage of irregularly shaped cells.Using micro‐computed tomography imaging, topological analysis, and a comparative physiological framework, we examined the structure of the spongy mesophyll in 40 species from 30 genera with laminar leaves and reticulate venation.A spectrum of spongy mesophyll diversity encompassed two dominant phenotypes: first, an ordered, honeycomblike tissue structure that emerged from the spatial coordination of multilobed cells, conforming to the physical principles of Euler’s law; and second, a less‐ordered, isotropic network of cells. Phenotypic variation was associated with transitions in cell size, cell packing density, mesophyll surface‐area‐to‐volume ratio, vein density, and maximum photosynthetic rate.These results show that simple principles may govern the organization and scaling of the spongy mesophyll in many plants and demonstrate the presence of structural patterns associated with leaf function. This improved understanding of mesophyll anatomy provides new opportunities for spatially explicit analyses of leaf development, physiology, and biomechanics. 
    more » « less